AWS Bedrock Guardrails x EthicalZen.ai +
SentryWorks.ai
Integration Modes

Nova | Product Lead Analysis

February 03, 2026



Executive summary

This document describes practical ways to integrate AWS Bedrock Guardrails with EthicalZen.ai

and SentryWorks.ai. The goal is to give customers multiple adoption paths: from augmenting

Bedrock’s native controls, to using EthicalZen as an end-to-end safety layer, to making

SentryWorks the policy control plane across multiple LLM providers.

At a glance

Mode A (Complement): keep Bedrock Guardrails; add EthicalZen Smart Guardrails that
Bedrock does not provide.

Mode B (Orchestration): design guardrails in EthicalZen; provision/manage Bedrock
Guardrails via API for Bedrock apps.

Mode C (Migration): start Bedrock-only; insert ACVPS Gateway; transition to
provider-agnostic enforcement without app changes.

Mode D (Dual-layer): defense-in-depth with EthicalZen pre/post checks and Bedrock
at-inference checks.

Mode E (Governance): define policies once in SentryWorks; auto-configure both EthicalZen
and Bedrock enforcement.

Mode F (Observability bridge): unified telemetry across Bedrock/OpenAl/Grog/custom while
preserving native enforcement where available.

Problem space

® Bedrock Guardrails are strong for general content moderation and some Pll, but customers
often need domain-specific and workflow-specific controls (finance, healthcare, legal,
academic integrity, fraud).

e Large enterprises run multiple LLM providers simultaneously. Provider-specific guardrails
create lock-in, inconsistent enforcement, and fragmented audit trails.

e Teams struggle with guardrail lifecycle at scale (draft — review — deploy — version pinning
— retirement), especially across dozens of apps and tenants.

e Regulated industries require demonstrable controls: deterministic policy contracts, evidence
collection, and provable configuration drift detection.

Key tenets

e Defense in depth: combine pre-inference, at-inference, and post-inference controls where
possible.

e Deterministic contracts: encode non-negotiable rules as explicit, testable contracts that
survive provider changes.

® Policy once, enforce everywhere: centralize policy in SentryWorks; translate to
provider-specific mechanisms.

e Transparent insertion: ACVPS Gateway acts as a low-latency proxy so applications do not

need refactors to adopt new safety layers.



Observable by default: every decision should produce metrics, traces, and an audit record
with version pinning.

Multi-tenant first: guardrails, policies, certificates, and telemetry must be tenant-isolated
with delegated administration.

Core integration building blocks

AWS Bedrock Guardrails: native runtime enforcement attached to InvokeModel via
guardrailldentifier + guardrailVersion.

ACVPS Gateway: transparent proxy for request/response interception, routing (e.g.,
X-Target-Endpoint), and enforcement chaining.

EthicalZen Smart Guardrails: domain ML classifiers, embedding-based detection, gap
discovery (FMA), and deterministic contracts.

SentryWorks Policy Hub: policy-as-code governance, audit requirements, and cross-platform
policy distribution.

Alex Agent (EthicalZen): natural language guardrail designer that compiles policies into Smart
Guardrails and contracts.

Certificates & attestation: certificate-based deployment controls and evidence of compliance
state.

Observability: unified metrics/traces (Prometheus/OTel) and guardrail effectiveness analytics
across providers.

Integration modes

Each mode is a deployable pattern. Organizations may run multiple modes simultaneously by

business unit, app tier, or risk class.

Mode A: Complement mode - EthicalZen adds what Bedrock lacks
Use when the customer is committed to Bedrock and wants additional domain and enterprise

controls without changing their existing Bedrock Guardrails setup.

Reference flow
Customer App — ACVPS Gateway — [EthicalZen Guardrails] — Bedrock InvokeModel (w/
Bedrock Guardrails)

l

Smart Guardrails:

- Domain-specific (finance, healthcare, legal)
- FMA-discovered gaps

- ML classification + embeddings

- Deterministic contract enforcement



Customer outcome

e Bedrock’s native content and basic Pll filters, plus specialized Smart Guardrails not offered
natively (e.g., insurance fraud detection, medical advice safety, academic integrity, bias
checks, token cost limiting).

® Asingle enforcement hop via ACVPS without re-architecting the application.

Role split

Component Primary responsibility

AWS Bedrock Guardrails General content filters, basic PIl, denied
topics, word filters.

EthicalZen Smart Guardrails Domain ML guardrails, FMA gap analysis,
deterministic contracts, prompt leakage
detection, custom embedding classifiers.

ACVPS Gateway Traffic proxy, chaining, logging, and policy
version pinning.

Example use case

Healthcare assistant uses Bedrock Guardrails for general moderation and EthicalZen Smart
Guardrails for medical advice safety, mental-health crisis detection, and HIPAA-specific PlI
patterns that exceed Bedrock defaults.

Implementation notes

e Deploy ACVPS as an L7 proxy (sidecar, ingress, or API gateway plugin) and route Bedrock
traffic through it.

® Run EthicalZen pre-checks before InvokeModel; let Bedrock Guardrails run at inference;
optionally run EthicalZen post-checks for contract validation.

® Pin contract versions and guardrail versions per environment (dev/stage/prod).

Mode B: Orchestration mode - EthicalZen manages Bedrock Guardrails via API
Use when the customer wants a single workflow to design and lifecycle-manage Bedrock
Guardrails at scale (many apps/tenants) rather than configuring each guardrail in the AWS
Console.

Reference flow

SentryWorks Policy Engine
| (auto-configure)

EthicalZen Portal — AWS Bedrock CreateGuardrail API
I I

DC Contracts guardrailIdentifier



l l

ACVPS Gateway — InvokeModel + guardrailVersion

Customer outcome

e Single pane of glass: design guardrails in EthicalZen (Alex Agent), provision them into
Bedrock via API, and manage draft—active—retired from one platform.

e Consistent version pinning across applications using guardrailldentifier + guardrailVersion.

Role split

Component Primary responsibility

EthicalZen Guardrail design (Alex Agent + FMA), lifecycle
management, multi-tenant governance,
cross-provider orchestration.

AWS Bedrock Runtime enforcement for Bedrock-hosted
models using guardrailldentifier +
guardrailVersion.

SentryWorks Optional: upstream policy definition feeding
EthicalZen guardrail designs.

Example use case

Enterprise with 50 Bedrock-powered apps designs guardrails conversationally in EthicalZen, runs
FMA to discover gaps, then auto-pushes configurations to Bedrock using
CreateGuardrail/UpdateGuardrail APIs. One contract governs all apps.

Implementation notes

e Implement a Bedrock Guardrails provisioning service in EthicalZen with tenant-aware |IAM
roles and least-privilege permissions.

e Store guardrail metadata (identifier, versions, last-updated, policy hash) for drift detection
and rollback.

e Expose promotion workflows (draft—review—active) with approvals and automated tests.

Mode C: Migration mode - from Bedrock-only to EthicalZen (multi-provider)
Use when the customer starts with Bedrock Guardrails but wants to reduce provider lock-in and
enforce equivalent policies across multiple LLM vendors without changing application code.

Reference flow

Phase 1: App — Bedrock (w/ Bedrock Guardrails)

Phase 2: App — ACVPS Gateway — Bedrock (Bedrock Guardrails + EthicalZen
monitoring)



Phase 3: App — ACVPS Gateway — [EthicalZen Guardrails] — Bedrock (no Bedrock
guardrails)

Phase 4: App — ACVPS Gateway — [EthicalZen Guardrails] — ANY LLM
(Bedrock/OpenAl/Groq/custom)

Customer outcome

e Provider independence: the same safety posture across providers using EthicalZen contracts
and Smart Guardrails.

e Incremental adoption with minimal disruption (monitoring first, then enforcement, then
provider routing).

Role split

Component Primary responsibility

ACVPS Gateway Transparent insertion and provider routing
via headers (e.g., X-Target-Endpoint).

EthicalZen Guardrail parity mapping, deterministic
contracts to preserve continuity,
provider-agnostic enforcement.

AWS Bedrock Gradually reduced role from primary

enforcement to optional monitoring to
removed.

Example use case

Fintech using Bedrock Guardrails adds direct provider routes (e.g., Anthropic Claude API and
Groq for cost). They insert ACVPS, replicate Bedrock rules as EthicalZen Smart Guardrails and
contracts, then route to any provider while keeping a consistent safety posture.

Implementation notes

e Start with shadow mode: EthicalZen evaluates but does not block; compare results against
Bedrock block/allow decisions.

e Automate parity tests: generate a policy test suite and validate equivalence before switching
enforcement.

e Introduce provider routing rules by workload (latency tier, cost tier, geography, compliance
tier).

Mode D: Dual-layer mode - defense in depth (both simultaneously)
Use for regulated or high-risk workloads where multiple layers of validation are required (input
validation, native at-inference checks, and output contract enforcement).



Reference flow
Customer App

!
ACVPS Gateway — [Layer 1: EthicalZen PRE-check]
| - Smart Guardrails (ML classification)
l - Prompt injection detection
| - Deterministic contract enforcement
!
Bedrock InvokeModel — [Layer 2: Bedrock AT-inference]
1 - Content filters
1 - Contextual grounding
1 - PII redaction
!
ACVPS Gateway — [Layer 3: EthicalZen POST-check]
1 - Response validation
l - Contract envelope constraints
| - Certificate compliance
!

Customer App (safe response)

Customer outcome

e Maximum safety: three validation layers with consistent audit evidence and version pinning.

e C(lear separation of duties: Bedrock provides native runtime controls; EthicalZen enforces
domain and contract constraints before and after inference.

Role split

Component Primary responsibility

EthicalZen Pre-flight guardrails and post-flight validation,
audit trail, certificate enforcement.

AWS Bedrock At-inference moderation, grounding checks,
and native Pll redaction.

ACVPS Gateway Chaining, latency management, and
observability across layers.

Example use case

A regulated bank needs SOC 2 and OCC-aligned controls. EthicalZen contracts enforce financial
advice rules (pre + post), while Bedrock handles native moderation and grounding. Compliance
evidence includes EthicalZen certificates and Bedrock guardrail version pinning.

Implementation notes
e Keep latency budgets explicit (per-layer SLOs) and allow tiered enforcement (strict for prod,
relaxed for dev).



e Use structured refusal responses and standardized reason codes to reduce support burden.
e Instrument block/allow decisions at every layer for drift and incident response.

Mode E: Governance mode - SentryWorks auto-configures both platforms

Use when an organization needs policy-as-code governance: define safety policies once and have
them compiled and applied across both Bedrock-native guardrails and EthicalZen
provider-agnostic guardrails.

Reference flow

SentryWorks.ai Policy Hub
| (governance policies)
F—— Ethicalzen Portal

| !
| Alex Agent (FMA) — Smart Guardrails — DC Contracts — ACVPS Gateway

L— AWS Bedrock (via API)
’

CreateGuardrail — guardrailIldentifier — Applied to InvokeModel calls

Customer outcome

® Policy once, enforce everywhere: unified audit trail and compliance reporting across multiple
providers.

e Automated translation of governance requirements into runtime controls with minimal
manual configuration.

Role split

Component Primary responsibility

SentryWorks Policy definition, compliance rules, audit
requirements, cross-platform governance.

EthicalZen Policy-to-guardrail translation (FMA + Alex
Agent), contract generation, enforcement
outside Bedrock, certificate authority.

AWS Bedrock Native enforcement on Bedrock-hosted
models; configurations auto-managed via
API.

Example use case
A global insurer runs 200+ Al services across Bedrock, OpenAl, and custom models. SentryWorks
defines 'no unauthorized medical advice'. It auto-generates an EthicalZen Smart Guardrail for



non-Bedrock traffic and a Bedrock denied-topic/content policy for Bedrock-hosted models. One

policy yields two enforcement engines.

Implementation notes

Represent policies in a portable intermediate format (policy IR) so multiple back-ends can be
compiled consistently.

Attach evidence requirements (logs, traces, signed configs) directly to each policy object.
Provide policy simulation and preflight testing before promotion to production.

Mode F: Observability bridge mode - EthicalZen as unified monitoring
Use when the customer wants unified compliance monitoring across multiple LLM providers,

even if enforcement remains provider-native (e.g., Bedrock Guardrails for Bedrock traffic).

R

eference flow
— Bedrock (w/ Bedrock Guardrails) — CloudWatch

ACVPS Gateway —|— OpenAl — (no native guardrails)
(transparent) |

L— Grog/Custom — (no native guardrails)

All traffic flows through ACVPS — Unified metrics (Prometheus/0Tel) — Single

dashboard
Customer outcome
e Unified telemetry: compare Bedrock block rates vs EthicalZen risk scores; detect drift and
policy effectiveness issues.
e Cross-provider reporting: one dashboard for all LLM traffic, regardless of vendor.
Role split
Component Primary responsibility
EthicalZen Telemetry collection, dashboards,
effectiveness scoring, drift detection, A/B
comparison of enforcement decisions.
AWS Bedrock Primary runtime enforcement for Bedrock
traffic.
ACVPS Gateway Capture request/response pairs and emit

metrics/traces in a consistent schema.



Example use case

An ML platform team runs five providers. Bedrock traffic uses native Bedrock Guardrails; ACVPS

captures all request/response pairs for unified reporting and to identify where policies behave

differently across vendors.

Implementation notes

e Adopt OpenTelemetry spans per request with consistent attributes (tenant, app, model,

policy version, decision code).

® Store aggregate metrics plus sampled payloads under strict data handling and retention

policies.

e Use observability to drive continuous improvement: identify false positives/negatives and

refine guardrails.

Mode comparison matrix

Use this table to pick an adoption pattern per app portfolio, compliance tier, and desired vendor

flexibility.

Mode Name Best for Primary value

A Complement Add domain controls | Wedge into Bedrock
while keeping deployments with
Bedrock Guardrails added specialized

guardrails.

B Orchestration Manage/provision Single pane of glass
Bedrock Guardrails at | and lifecycle
scale from EthicalZen | automation for

Bedrock Guardrails.

C Migration Transition from Provider
Bedrock-only to independence with
provider-agnostic minimal app
enforcement changes.

D Dual-layer Pre + at + post Defense-in-depth for
inference layered regulated, high-risk
controls workloads.

E Governance SentryWorks policy Policy-as-code
control plane across governance and
platforms




unified compliance
evidence.

F Observability

Unified monitoring
across providers

Cross-provider
analytics, drift
detection, and
effectiveness scoring.

Recommended Approach

e Start with Mode A (Complement): ‘We add what Bedrock doesn’t have.'
e Expand with Mode D (Dual-layer): 'Defense in depth for regulated industries."'
e Platform with Mode E (Governance): 'SentryWorks as the control plane for Al safety across

providers.'

Proposed integration modes by common use case

Use case category

Typical constraints

Recommended modes

Regulated customer support
(bank/insurer)

Strict refusal behavior, audit
evidence, Pll redaction,
prompt injection resistance

D + E (plus F for analytics)

Healthcare guidance / triage

Medical advice safety, crisis
escalation, HIPAA-style PII
patterns

A — D, then E for scale

Enterprise internal copilots

Leakage prevention, IP/PlI
controls, cost limits,
consistent UX

A + F, then B for lifecycle

experimentation teams

preflight simulation

Multi-provider platform team | Vendor flexibility, uniform F+C, thenE
reporting, drift detection
High-volume Fast iteration, A/B tests, B+F thenE




Implementation roadmap (reference)

Phase 0: Define policy IR and contract schemas; establish tenant isolation and evidence
retention rules.

Phase 1: Deploy ACVPS Gateway in shadow mode; collect baseline metrics; enable Mode F
observability.

Phase 2: Add Mode A Smart Guardrails for 2-3 high-value domains; publish a parity test
suite.

Phase 3: Enable Mode B provisioning for Bedrock Guardrails; add approval workflows and
version pinning.

Phase 4: Roll out Mode D for regulated tiers; standardize refusal UX and incident playbooks.
Phase 5: Launch Mode E governance with SentryWorks as the control plane; expand to all
providers.

Appendix: Bedrock API touchpoints (non-exhaustive)

CreateGuardrail / UpdateGuardrail: programmatic guardrail provisioning and updates.
InvokeModel: apply guardrailldentifier and guardrailVersion for runtime enforcement.
CloudWatch metrics/logs: integrate with ACVPS telemetry for unified dashboards.



	Executive summary 
	At a glance 

	Problem space 
	Key tenets 
	Core integration building blocks 
	Integration modes 
	Mode A: Complement mode - EthicalZen adds what Bedrock lacks 
	Reference flow 
	Customer outcome 
	Role split 
	Example use case 
	Implementation notes 

	Mode B: Orchestration mode - EthicalZen manages Bedrock Guardrails via API 
	Reference flow 
	Customer outcome 
	Role split 
	Example use case 
	Implementation notes 

	Mode C: Migration mode - from Bedrock-only to EthicalZen (multi-provider) 
	Reference flow 
	Customer outcome 
	Role split 
	Example use case 
	Implementation notes 

	Mode D: Dual-layer mode - defense in depth (both simultaneously) 
	Reference flow 
	Customer outcome 
	Role split 
	Example use case 
	Implementation notes 

	Mode E: Governance mode - SentryWorks auto-configures both platforms 
	Reference flow 
	Customer outcome 
	Role split 
	Example use case 
	Implementation notes 

	Mode F: Observability bridge mode - EthicalZen as unified monitoring 
	Reference flow 
	Customer outcome 
	Role split 
	Example use case 
	Implementation notes 


	Mode comparison matrix 
	Recommended Approach 
	Proposed integration modes by common use case 
	Implementation roadmap (reference) 
	Appendix: Bedrock API touchpoints (non-exhaustive) 

